Effects of Complex Modification by Sr–Sb on the Microstructures and Mechanical Properties of Al–18 wt % Mg2Si–4.5Cu Alloys

نویسندگان

  • Youhong Sun
  • Shaoming Ma
  • Huiyuan Wang
  • Lei Chen
  • Ke Gao
  • Yinlong Ma
  • Baochang Liu
چکیده

This research was carried out to investigate the influence of Sr–Sb on the microstructures and mechanical properties of Al–18 wt % Mg2Si–4.5Cu alloys. After the addition of 0.2 wt % Sr–Sb, the morphologies of primary Mg2Si transformed from equiaxed dendrite to cube in as-cast alloys and the average size of primary Mg2Si decreased from ~50 to ~20 μm. The shape of eutectic Mg2Si changed from Chinese script to short rod. After extrusion and T6 heat treatment, the ultimate tensile strength of modified alloy at room temperature (RT) and 100 ̋C increased respectively from 229 to 288 MPa, and from 231 to 272 MPa. The elongation-to-failure only slightly improved from 2.9% to 3.8% and from 3.3% to 3.7% at RT and 100 ̋C, respectively. The tensile fracture surface revealed a transition from brittle fracture to ductile fracture after modifying by 0.2 wt % Sr–Sb.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Complex Modification by Sr-Sb on the Microstructures and Mechanical Properties of Al-18 wt % Mg₂Si-4.5Cu Alloys.

This research was carried out to investigate the influence of Sr-Sb on the microstructures and mechanical properties of Al-18 wt % Mg₂Si-4.5Cu alloys. After the addition of 0.2 wt % Sr-Sb, the morphologies of primary Mg₂Si transformed from equiaxed dendrite to cube in as-cast alloys and the average size of primary Mg₂Si decreased from ~50 to ~20 μm. The shape of eutectic Mg₂Si changed from Chin...

متن کامل

Influence of Li2Sb Additions on Microstructure and Mechanical Properties of Al-20Mg2Si Alloy

It is found that Li2Sb compound can act as the nucleus of primary Mg2Si during solidification, by which the particle size of primary Mg2Si decreased from ~300 to ~15–25 μm. Owing to the synergistic effect of the Li2Sb nucleus and adsorption-poisoning of Li atoms, the effect of complex modification of Li-Sb on primary Mg2Si was better than that of single modification of Li or Sb. When Li-Sb cont...

متن کامل

Study of the Mechanism and Causes of Pore Formation in Sr-modified Al-Si Alloys

The formation of microporosity in modified Al-Si alloys has been reviewed in the present study. A major concern in modification is the increased tendency to form microporosity in the macro-shrinkage free Al-Si alloy castings. It has also been demonstrated that at low hydrogen contents (0.1cc/ 100g, Al), where only shrinkage porosity should occur, the effect of Sr-modification on porosity conten...

متن کامل

Study of the Mechanism and Causes of Pore Formation in Sr-modified Al-Si Alloys

The formation of microporosity in modified Al-Si alloys has been reviewed in the present study. A major concern in modification is the increased tendency to form microporosity in the macro-shrinkage free Al-Si alloy castings. It has also been demonstrated that at low hydrogen contents (0.1cc/ 100g, Al), where only shrinkage porosity should occur, the effect of Sr-modification on porosity conten...

متن کامل

Effect of a Minor Sr Modifier on the Microstructures and Mechanical Properties of 7075 T6 Al Alloys

The influence of a minor strontium (Sr) modifier on the microstructures and mechanical properties of 7075 Al alloys was investigated in this paper. The grain size of cast 7075 Al alloys was refined from 157 μm to 115 μm, 108 μm, and 105 μm after adding 0.05 wt. %, 0.1 wt. %, and 0.2 wt. % Sr, respectively. The extruded 7075 Al alloys was refined with different degrees of Sr modifier. The mechan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016